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ABSTRACT
Space-filling designs are widely used in both computer and physical experiments. Column-orthogonality,
maximin distance, and projection uniformity are three basic and popular space-filling criteria proposed
from different perspectives, but their relationships have been rarely investigated. We show that the average
squared correlation metric is a function of the pairwise L2-distances between the rows only. We further
explore the connection between uniform projection designs and maximin L1-distance designs. Based on
these connections, we develop new lower and upper bounds for column-orthogonality and projection
uniformity from the perspective of distance between design points. These results not only provide new
theoretical justifications for each criterion but also help in finding better space-filling designs under multiple
criteria. Supplementary materials for this article are available online.
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1. Introduction

Computer experiments offer significant economic benefits for
investigating complex physical systems (Santner, Williams, and
Notz 2003; Fang, Li, and Sudjianto 2006). Constructing efficient
designs with good space-filling properties has much importance
in both computer and physical experiments; see, for example,
Pronzato and Müller (2012) and Joseph (2016) for excellent sur-
veys on space-filling designs. Latin hypercube designs (LHDs)
are arguably the most widely used for computer experiments
because of their maximum one-dimensional stratification prop-
erties. Bingham, Sitter, and Tang (2009) and Sun and Tang
(2017a) also proposed balanced designs with flexible number
of levels for many computer experiments, which include LHDs
as special cases. An ordinary LHD or balanced design has uni-
form one-dimensional projections but still may not be space-
filling because of possibly poor two and higher dimensional
performance. Therefore, various optimality criteria have been
proposed for design optimization and construction.

Column-orthogonality (Owen 1994; Tang 1998; Ye 1998)
and maximin distance criterion (Johnson, Moore, and Ylvisaker
1990; Zhou and Xu 2014; Ba, Myers, and Brenneman 2015) are
two most commonly used design criteria which have drawn
much attention. Exact or near column-orthogonality can be
viewed as a useful stepping stone to space-filling designs (Bing-
ham, Sitter, and Tang 2009), but their theoretical connections
with space-filling designs have not been completely revealed yet.
It is one of the major objectives of this article to explain these
connections. Maximin distance designs are asymptotically D-
optimal under the ordinary kriging model as the correlations
between points become weak (Johnson, Moore, and Ylvisaker
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1990). A number of authors have constructed orthogonal and
maximin LHDs; refer to Lin and Tang (2015) for a compre-
hensive review and Sun and Tang (2017a, 2017b), Xiao and Xu
(2017, 2018), and Wang, Xiao, and Xu (2018) for some recent
advances. On the other hand, uniform designs aim to spread
the design points uniformly over the whole design space (Fang
et al. 2000; Fang, Li, and Sudjianto 2006). To improve the low-
dimensional projections, Sun, Wang, and Xu (2019) recently
proposed and studied uniform projection designs.

It is natural to ask whether there exist some connections or
equivalences among different space-filling criteria. Wang, Yang,
and Xu (2018) proved that within the class of mirror-symmetric
designs with 2m runs and m factors, column-orthogonal designs
are maximin L2-distance designs. Sun, Wang, and Xu (2019)
established a connection between the uniform projection crite-
rion and maximin L1-distance. They showed that maximin L1-
equidistant designs are uniform projection designs. This article
aims to explore some new connections among the criteria—
column-orthogonality, projection uniformity and maximin L1-
and L2-distance. We establish some optimality results and show
that these different criteria are closely related and consistent
in more general cases, mainly when the designs have relatively
high factor-to-run ratios. Our results provide not only new the-
oretical justifications for each criterion from other viewpoints,
but also some insights for finding or constructing better space-
filling designs with economic run size. Such designs can be
used for factor screening in physical and computer experiments
with a large number of factors (Butler 2005; Moon, Dean, and
Santner 2012; Woods and Lewis 2016; Kleijnen 2017). For exam-
ple, Moon, Dean, and Santner (2012) proposed a two-stage
screening procedure for computer experiments, in which an
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n×(n−1) preliminary design matrix X∗ satisfying the following
three requirements is in demand for the first stage:

(P.1) The columns of X∗ must be uncorrelated to allow
independent assessment of the effects of the different inputs;
(P.2) the minimum and maximum values in each column
must be 0 and 1, respectively, to prevent input values with
larger ranges from having larger impacts on the response,
artificially induced by the design; and (P.3) the design defined
by X∗ should be “space-filling” to insure that all regions of the
input space are explored.

The theories and designs discussed in this article agree with
(P.1)–(P.3). Although the main focus of this article is space-
filling designs, it is worth pointing out that our results are
applicable for not only LHDs, but also general balanced designs
including s-level fractional factorials.

The remainder of this article is unfolded as follows. Section 2
gives a brief background and presents several novel results
linking column-orthogonal designs with maximin L2-distance
designs. Section 3 provides lower bounds of the uniform pro-
jection criterion, some connections between projection unifor-
mity and maximin L1-distance, and some general asymptotical
optimality results. Section 4 studies the connection between
column-orthogonal designs and uniform projection designs.
Section 5 concludes this article with a general discussion. The
supplementary materials contain all the proofs and some addi-
tional tables and figures.

2. Connection Between Column-Orthogonality and
L2-Distance

2.1. Notation, Definitions, and Preliminary Results

We use (n, sm) to denote a design of n runs and m factors, with
each factor taking levels from the set Zs = {0, 1, . . . , s − 1}.
We use an n × m matrix D = (xik)n×m to represent an (n, sm)

design. A design D is called an orthogonal array (OA) of strength
t, denoted by OA(n, m, s, t), if each level combination appears
equally often in any distinct t columns of D. We call an (n, sm)

design balanced if it is an OA of strength one, that is, each
level appears n/s times in each column. In particular, an LHD
is a balanced (n, nm) design and is denoted by LHD(n, m).
Throughout the article, we consider balanced designs only.
We call a design combinatorially orthogonal if it is an OA of
strength two.

Researchers have proposed various space-filling criteria
and studied the corresponding optimal space-filling designs
for computer experiments. Column-orthogonality (or low
correlation) is a popular criterion which optimizes designs by
minimizing correlations among factors (Owen 1994; Tang 1998;
Ye 1998). We also call a column-orthogonal design simply as an
orthogonal design. Owen (1994) proposed the mean squared
correlation metric to measure the orthogonality of a design D,
which is defined as ρ2(D) = 2

∑m−1
j=1

∑m
k=j+1 ρ2

jk/[m(m − 1)],
where ρjk is the sample correlation between the jth and kth
columns of D. It is clear that 0 ≤ ρ2(D) ≤ 1. A design D
is column-orthogonal if and only if ρ2(D) = 0. Obviously, a
combinatorially orthogonal design must be column-orthogonal,
but the converse is not necessarily true.

The maximin distance criterion is to maximize the minimum
inter-site distance of a design (Johnson, Moore, and Ylvisaker
1990). For the ith row xi = (xi1, . . . , xim) and the jth row
xj = (xj1, . . . , xjm) of a design D, their Lp-distance is defined
as dp(xi, xj) = ∑m

k=1 |xik − xjk|p, where p ≥ 1 is an integer.
This definition is the pth power of the traditional Lp-norm,
which ensures that the Lp-distance is additive, that is, dp(x, y) =∑m

i=1 dp(xi, yi), and is always an integer. The Lp-distance of D is
dp(D) = min{dp(xi, xj), 1 ≤ i < j ≤ n}. A design D is called a
maximin Lp-distance design if it has the maximum dp(D) value
among all competing designs. In the literature p = 1 and p = 2
are the most widely used, which correspond to the rectangular
(Manhattan) distance and the Euclidean distance, respectively.

Let d̄p = 2
∑

1≤i<j≤n dp(xi, xj)/[n(n − 1)] be the average
pairwise Lp-distance of a balanced (n, sm) design D. Using the
balance property, it is easy to obtain that d̄p is a constant deter-
mined by n, m, and s. Specifically, we have

d̄1 = nm(s2 − 1)

3(n − 1)s
(1)

and

d̄2 = nm(s2 − 1)

6(n − 1)
. (2)

Based on the fact that the minimum inter-site distance cannot
exceed the integer part of the average distance, Zhou and Xu
(2015) derived the following upper bounds.

Lemma 1. For a balanced (n, sm) design D = (xik), d1(D) ≤
�d̄1� and d2(D) ≤ �d̄2�, where �x� is the largest integer not
exceeding x.

In particular, for LHDs the upper bounds become d1(D) ≤
�(n + 1)m/3� and d2(D) ≤ �n(n + 1)m/6�. We first explore
the connection between column-orthogonality and maximin
distance. Here is an example.

Example 1. Let n = 16, 20, 25, and 30 and m = 2, . . . , n. For
each (n, m) combination, we generate 100 maximin L2-distance
LHD(n, m)’s by the R package SLHD (Ba, Myers, and Brenne-
man 2015) with default settings. Then for the 100 LHD(n, m)’s,
we calculate their ρ2, d1, and d2 values. Table 1 summarizes the
average ρ2, d1, and d2 values and the corresponding standard
errors for n = 16, and tables for n = 20, 25, 30 can be found
in the supplementary materials. We see that the variability of
the 100 maximin LHDs generated by the R package SLHD is
relatively small in most cases. The plot of average ρ2 values to
the number of factors m is given as the left panel in Figure 1. For
comparison, we also generate 100 random LHD(n, m)’s for each
(n, m) combination. The corresponding plot is given as the right
panel in Figure 1.

From Figure 1 and related numerical results, we have the
following observations.

(i) For random LHDs of n runs, the average ρ2 is about
O(1/n), and the curve becomes flat as m grows. Actually,
by Owen (1994), the expectation of ρ2 for random LHDs
of n runs is 1/(n − 1), and is independent of the number of
columns.
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Table 1. The average (ave) d1, d2, and ρ2 values and the corresponding standard errors (SEs) for 100 maximin distance LHD(n, m)’s for n = 16 and m = 2, . . . , n.

d1 d2 ρ2

m Ave SE Ave SE Ave SE

2 4.96 0.20 13.00 0.92 0.0146 0.0202
3 8.80 0.59 38.65 2.60 0.0139 0.0112
4 13.30 0.83 75.08 4.08 0.0117 0.0063
5 17.97 0.96 119.19 5.99 0.0088 0.0037
6 22.84 1.28 165.43 6.78 0.0081 0.0029
7 28.36 1.47 212.84 8.82 0.0074 0.0026
8 33.80 1.68 260.75 10.22 0.0071 0.0026
9 39.30 1.53 309.26 10.74 0.0084 0.0023

10 44.67 1.48 353.92 10.57 0.0099 0.0021
11 50.05 1.65 399.45 11.55 0.0103 0.0021
12 55.19 1.92 443.20 11.91 0.0099 0.0021
13 61.05 2.06 493.29 10.21 0.0080 0.0020
14 67.08 1.72 543.84 12.58 0.0064 0.0024
15 73.22 1.88 603.19 15.41 0.0047 0.0025
16 78.18 1.98 645.23 16.36 0.0078 0.0020

Figure 1. Plot of the average ρ2 values of 100 maximin LHD(n, m)’s (left) and random LHD(n, m)’s (right) for n = 16, 20, 25, 30 and m = 2, . . . , n.

(ii) In general, all the maximin distance LHDs have much
smaller average squared correlations than the random
LHDs. Some explanations of this phenomenon can be
found in Theorems 1 and 3.

(iii) For each n, the average ρ2 value of maximin L2-distance
LHDs decreases when m is small (less than n/2). Especially,
when m is around n/2, the average ρ2 value achieves a local
minimum for n = 16 and 20. This phenomenon also exists
for other n’s in our simulations not reported here. Exam-
ple 4 and the paragraph afterward provide explanations
why m = n/2 tends to be a local minimum point.

(iv) For each n, the average ρ2 value of maximin L2-distance
LHDs decreases when m is from about 2n/3 to n − 1. The
smallest average ρ2 values are all attained when m = n−1.
See Theorem 2, Proposition 2, and related comments and
examples for some explanations.

There are several other criteria considering low-dimensional
projection properties. The minimum average reciprocal dis-
tance (minARD) criterion, proposed by Draguljić, Santner, and
Dean (2012), aims to minimize

ARD(D) =⎧⎨
⎩ 1(n

2
)∑

q∈J
(m

q
) ∑

q∈J

∑
|U |=q

n−1∑
i=1

n∑
j=i+1

(
q1/2

d1/2
2 (xi,U , xj,U )

)λ
⎫⎬
⎭

1/λ

for an n × m D = (xik), where λ ≥ 1 is a prespecified real
number, J and U are subsets of {1, 2, . . . , m}, |U | stands for the
cardinality of U , and xi,U and xj,U are, respectively, the ith and
jth runs of D projected onto dimensions indexed by the elements
of U . The maximum projection (MaxPro) criterion, proposed
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Figure 2. Plot of the ρ2 values for maximin, minARD, MaxPro, and uniform projec-
tion (UniPro) LHD(n, m)’s for n = 20 and m = 2, . . . , n.

by Joseph, Gul, and Ba (2015), aims to minimize

ψ(D) =
⎧⎨
⎩ 1(n

2
) n−1∑

i=1

n∑
j=i+1

1∏m
k=1(xik − xjk)2

⎫⎬
⎭

1/m

.

Both ARD and ψ consider the distance between points in low-
dimensional projections. The uniform projection criterion pro-
posed by Sun, Wang, and Xu (2019) aims to minimize the two-
dimensional discrepancy φ(D) defined in (8); see Section 3.

Example 2. We compare four types of space-filling designs. For
n = 20 and each m = 2, . . . , n, we construct a maximin LHD,
a minARD LHD, a MaxPro LHD, and a uniform projection
LHD. The maximin LHD(n, m) is chosen as the best design
from the 100 LHD(n, m)’s generated in Example 1. The MaxPro
LHD(n, m) is chosen as the best design by running MaxProLHD
function in the R package MaxPro (Joseph, Gul, and Ba 2015) for
100 times with default settings. The minARD LHDs (using λ =
1 and J = {1, 2}) and uniform projection LHDs are similarly
obtained via a threshold accepting algorithm (see Fang et al.
2000). Figure 2 shows the plot of ρ2 values of these LHDs against
m. Compared with random LHDs in Figure 1, all four types of
LHDs have much smaller ρ2 values. As m increases, maximin
distance and uniform projection LHDs outperform minARD
and MaxPro LHDs. It is worth noting that maximin distance
LHDs have small correlations without explicit consideration
of low-dimensional projection properties. However, maximin-
distance LHDs do not perform as well as the other three types of
LHDs under the projection distance and projection uniformity
criteria; see the supplementary materials.

Joseph and Hung (2008) pointed out that orthogonal LHDs
may not be space-filling in terms of distance and vice versa. This
is true when the number of columns is small compared to the
number of runs. For a fixed run size, from Example 1 we see that
maximin L2-distance LHDs tend to become “more” orthogonal
as the factor-to-run ratio approaches to one. Interestingly, the
average ρ2 values are rather small when m is around n/2 and
n − 1. Wang, Yang, and Xu (2018) provided an explanation for
the special case n = 2m by showing that there exists a strong
relationship between column-orthogonality and maximin L2-
distance for mirror-symmetric (n, sm) designs with n = 2m. We

will explore the connection between the two criteria in a general
situation.

2.2. Some Theoretical Results

The following lemma shows that the average L1- and L2-
distances between a fixed row and all other rows in a design
is determined by the L2-distance between the fixed row and the
center point. This lemma is very useful in proving the upcoming
theorems.

Lemma 2. Let D = (xik)n×m be a balanced (n, sm) design. For
any i = 1, . . . , n,

n∑
j=1

d1(xi, xj) = nm(s2−1)
4s + n

s d2(xi, s0),

n∑
j=1

d2(xi, xj) = nm(s2−1)
12 + nd2(xi, s0),

(3)

where xi is the ith row of D, s0 = (s − 1)/2, and d2(xi, s0) =∑m
k=1(xik − s0)

2.

Now we give an analytical expression of the average squared
correlation ρ2(D) in terms of the pairwise L2-distances between
design points of D.

Theorem 1. For a balanced (n, sm) design D = (xik), we have

ρ2(D) = h(D)

n2m(m − 1)(s2 − 1)2/36
+ 1, (4)

where

h(D) =
n∑

i=1

n∑
j=1

d2
2(xi, xj) − 2

n

n∑
i=1

( n∑
j=1

d2(xi, xj)

)2
.

Theorem 1 establishes a novel link between the relationship
of rows and columns of the design. This link provides new
insights on the design orthogonality from the distance perspec-
tive. Based on this, we obtain the following lower bound for
ρ2(D).

Theorem 2. For a balanced (n, sm) design D,

ρ2(D) ≥ ρ2
LB = max

{
m + 1 − n

(n − 1)(m − 1)
, 0

}

=
{

0 if m ≤ n − 1,
m+1−n

(n−1)(m−1)
if m > n − 1.

Furthermore, when m ≥ n − 1, the lower bound is achieved if
and only if D is an equidistant design under the L2-distance.

There are a series of similar results in the literature of super-
saturated designs when m ≥ n − 1. For a balanced (n, 2m)

design D with two levels taken as {−1, 1}, the E(s2) criterion is
defined to be 2

∑m−1
j=1

∑m
k=j+1 s2

jk/[m(m − 1)], where sjk is the
inner product of the jth and kth columns of D (Booth and Cox
1962). Obviously, for a two-level design D, E(s2) = n2ρ2(D).
Nguyen (1996) and Tang and Wu (1997) independently showed
E(s2) ≥ n2(m + 1 − n)/[(n − 1)(m − 1)]. Cheng (1997) gave
an alternative proof by considering the inner products of the
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rows instead of the columns. Butler (2005) generalized the E(s2)
criterion to supersaturated LHDs and proved the same lower
bound. Theorem 2 extends these results and incorporates two-
level designs and LHDs as special cases. As pointed out by a
referee, Theorem 2 can be proved by using the same techniques
in Tang and Wu (1997), Nguyen (1996), Cheng (1997), and
Butler (2005). Our proof is based on Theorem 1 and provides
a new space-filling perspective for general s-level designs. Fur-
thermore, Theorem 2 reveals that, when m ≥ n − 1, ρ2(D) =
(m + 1 − n)/[(n − 1)(m − 1)] is equivalent to the geometrical
property that all of the design points in D have the same L2-
distance from each other.

It is well known that there do not exist column-orthogonal
designs when m ≥ n, which can also be seen from Theo-
rem 2 since ρ2(D) ≥ (m + 1 − n)/[(n − 1)(m − 1)] > 0.
On the other hand, from the proof of Theorem 2, if an L2-
equidistant balanced (n, sm) design D exists, ρ2(D) must equal
(m + 1 − n)/[(n − 1)(m − 1)], which is nonnegative only if
m ≥ n − 1. Therefore, we have the following proposition.

Proposition 1. There do not exist L2-equidistant balanced
(n, sm) designs when m < n − 1.

For saturated (n, sm) designs in the sense of m = n − 1,
there is an exact equivalence between column-orthogonality
and maximin L2-distance.

Proposition 2. Let D be a balanced (n, sn−1) design. Then D is
column-orthogonal if and only if it is a maximin equidistant
design under the L2-distance.

Example 3. Let s = 2, m = n − 1, and D be any (n, sm) design.
Then from Proposition 2, D is column-orthogonal if and only if
it is an equidistant design under the L2-distance. Since for s = 2,
any Lp-distance is equivalent to the Hamming distance, that is,
the number of positions where two rows differ, D must be an
equidistant design under the Hamming distance. Such a design
is well known as a saturated two-level OA(n, n − 1, 2, 2).

A refinement of Theorem 2 for LHDs or balanced designs
under some parameters can be obtained by considering the
following results. Lin et al. (2010) showed that an orthogonal
LHD(n, m) with n ≥ 4 exists if and only if n �= 4k + 2 for any
integer k ≥ 0. Karunanayaka and Tang (2018) further showed
that an orthogonal balanced (n, sm) design does not exist if n/s
is odd and s = 4k + 2 for some integer k ≥ 0. Actually, for
an LHD(n, m) with n = 4k + 2 > 0, Lin (2008) obtained in
her PhD thesis that ρ2(D) ≥ 36/[n2(n2 − 1)2]. Using the same
technique, it is not difficult to show that for a balanced (n, sm)

design D, if s = 4k + 2 for some integer k ≥ 0 and n/s is odd,
then ρ2(D) ≥ 36/[n2(s2 − 1)2] and, with the combination of
Theorem 2,

ρ2(D) ≥ max
{

m + 1 − n
(n − 1)(m − 1)

,
36

n2(s2 − 1)2

}
.

Equidistant designs with d2(D) = d̄2 are maximin distance
designs and optimal under the ρ2(D) criterion by Theorem 2.
However, in many cases equidistant designs do not exist and
the lower bound in Theorem 2 is not achievable. Recall that for

an (n, sm) design D, the average pairwise Lp-distance, d̄p, is a
constant. Let

Vp(D) =
∑

1≤i<j≤n

(
dp(xi, xj) − d̄p

)2 (5)

be the variation of all pairwise Lp-distances in D. It is reasonable
to expect that a good space-filling design, such as a maximin Lp-
distance design, should minimize Vp(D) as much as possible.
The smaller the Vp(D) value is, the better the design is. The next
theorem shows that ρ2(D) is controlled by V2(D).

Theorem 3. Let D be a balanced (n, sm) design and V2(D) be
defined in (5) with p = 2. We have

ρ2(D) ≤ m + 1 − n
(n − 1)(m − 1)

+ 72V2(D)

n2m(m − 1)(s2 − 1)2 . (6)

The equality holds if and only if d2(xi, s0) = m(s2 − 1)/12
for any 1 ≤ i ≤ n, where s0 = (s − 1)/2 and d2(xi, s0) =∑m

k=1(xik − s0)
2.

Example 4. A regular cross-polytope in R
m is the convex hull

of m mutually perpendicular line segments of equal length,
intersecting at the midpoint of each of them. An (n, sm) design
D is called mirror-symmetric if for any point (x1, . . . , xm) in
D, (s − 1 − x1, . . . , s − 1 − xm) is also a point in D. Let D
be any maximin mirror-symmetric (n, sm) design with n =
2m and d2(D) = m(s2 − 1)/6. Wang, Yang, and Xu (2018)
proved that the geometric structure of D is unique—the 2m
points are the vertices of a cross-polytope in R

m. All the n(n −
1)/2 = 2m2 − m pairwise L2-distances of D only take two
values, with (2m2 − 2m) d2(xi, xj)’s equal to m(s2 − 1)/6 and
the remaining m d2(xi, xj)’s equal to m(s2 − 1)/3. By (2), we
have d̄2 = m2(s2 − 1)/(6m − 3). Therefore, the variation of
all d2(xi, xj)’s is V2(D) = m3(m − 1)

(
s2 − 1

)2
/(36m − 18).

Then by Theorem 3, we obtain ρ2(D) ≤ 0, which means that
ρ2(D) = 0, that is, D is orthogonal.

Since maximin distance designs under the L2-distance tend
to have small V2(D), Theorem 3 explains why the average ρ2(D)

values are small for maximin distance LHDs in Example 1(ii).
When n = 2m is an even number such that an orthogonal
mirror-symmetric LHD(n, m) D in Example 4 exists, for exam-
ple, n ≥ 4 being any power of 2 (Sun, Liu, and Lin 2009), we have
d2(D)/d̄2 = 1 − 1/n. Wang, Yang, and Xu (2018) conjectured
that such D also has maximin L2-distance among all possible
LHD(n, m)’s. We believe this is true at least for small n, for
example, n = 8, 16, 24, etc., based on numerical search. Thus,
for such n and m = n/2 searching for a maximin L2-distance
LHD tends to yield a nearly orthogonal LHD as observed in
Example 1 (iii). When m is close to n − 1, maximin distance
designs under the L2-distance are close to be L2-equidistant,
hence, Theorem 2 and Proposition 2 explain why the average
ρ2(D) values become smaller as m approaches n − 1 and why
the minimum average ρ2(D) values are all attained when m =
n−1 in Example 1(iv). Sun, Wang, and Xu (2019) compared the
projection properties of four 19×18 designs and observed a phe-
nomenon that maximin L2-distance LHDs tend to have small
correlations in all projected dimensions. The above theoretical
results also explain this phenomenon.
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In view of Theorems 2 and 3, we naturally expect that a nearly
L2-equidistant design should have a small ρ2(D) value. For an
(n, sm) design D, suppose max1≤i<j≤n |d2(xi, xj) − d̄2| ≤ δ for
some δ > 0. It is clear that V2(D) ≤ n(n − 1)δ2/2. Then by
Theorem 3, ρ2(D) is also controlled by δ. We summarize this as
a corollary.

Corollary 1. Let D be a balanced (n, sm) design and d̄2 be defined
in (2). We have

ρ2(D) ≤ mn(δ/d̄2)
2 + m + 1 − n

(n − 1)(m − 1)
, (7)

where δ = max1≤i<j≤n |d2(xi, xj) − d̄2|.
Theorem 2 and Corollary 1 together give

max
{

m + 1 − n
(n − 1)(m − 1)

, 0
}

≤ ρ2(D)

≤ mn(δ/d̄2)
2 + m + 1 − n

(n − 1)(m − 1)
.

In particular, δ = 0 implies ρ2(D) = (m + 1 − n)/[(n − 1)(m −
1)]. A nearly L2-equidistant design usually has a small ratio of
δ/d̄2. Hence, Corollary 1 implies that a nearly L2-equidistant
design does have a small ρ2(D) value. For example, suppose if
m = n−1 and δ/d̄2 ≤ 0.1, then ρ2(D) ≤ 0.01mn/{(n−1)(m−
1)} = 0.01n/(n − 2). The next two examples illustrate the value
of Corollary 1.

Example 5. Let

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3 1 0 2 1 0 0 2 3 3 1 2
2 3 1 0 3 1 1 0 2 2 3 0
3 1 2 1 0 2 1 0 0 2 3 3
2 3 0 3 1 0 3 1 1 0 2 2
3 3 3 1 2 1 0 2 1 0 0 2
2 2 2 3 0 3 1 0 3 1 1 0
3 0 2 3 3 1 2 1 0 2 1 0
2 1 0 2 2 3 0 3 1 0 3 1
3 1 0 0 2 3 3 1 2 1 0 2
2 3 1 1 0 2 2 3 0 3 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

T

be the balanced (12, 410) design from Example 1 of Sun, Pang,
and Liu (2011), with its original levels mapped to 0, 1, 2, 3
by −3 → 0, −1 → 1, 1 → 2, 3 → 3. This design has
d2(D) = 25 and max1≤i<j≤n d2(xi, xj) = 30. By (2) we obtain
d̄2 = 27, hence, δ = 3 and D is nearly maximin L2-equidistant
with δ/d̄2 = 1/9. From Corollary 1, we know that ρ2(D) ≤
4.8634 × 10−3. In fact, D is orthogonal.

Example 6. Using Theorem 4 of Wang, Xiao, and Xu (2018), we
can construct an LHD(9, 9)

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9
2 4 6 8 9 7 5 3 1
3 6 9 7 4 1 2 5 8
4 8 7 3 1 5 9 6 2
5 9 4 1 6 8 3 2 7
6 7 1 5 8 2 4 9 3
7 5 2 9 3 4 8 1 6
8 3 5 6 2 9 1 7 4
9 1 8 2 7 3 6 4 5

⎞
⎟⎟⎟⎟⎟⎟⎠

.

This design has d2(D) = 126 and max1≤i<j≤n d2(xi, xj) = 140.
By (2) we obtain d̄2 = 135, hence, δ = 9 and D is nearly
maximin L2-equidistant with δ/d̄2 = 1/15. From Corollary 1,
we know that ρ2(D) ≤ 0.02125. In fact, D is nearly orthogonal
with ρ2(D) = 0.01763.

Remark 1. We point out that for D = (xik) in Example 6, some
of the two-dimensional projections have obvious patterns that
are not space-filling. This phenomenon occurs in many spe-
cialized constructions, especially when the factor-to-run ratio
is large, for example, the good-lattice-point-based methods in
Example 6 and Section 3.2, and some existing constructions for
column-orthogonal designs. Such phenomenon can be some-
what mitigated by adding uik/n (or uik/s for an s-level design)
to each xik in practice, where uik’s are independent random
variables from uniform (0, 1).

3. Connection Between Projection Uniformity and
Maximin L1-Distance

3.1. Projection Uniformity and Lower Bounds

Uniformity is another favorable space-filling criterion which
aims to scatter points as uniformly as possible over the whole
design space by minimizing certain discrepancy metric. The
most widely used discrepancies include the centered L2-
discrepancy, the wrap-around L2-discrepancy and the discrete
discrepancy (see, e.g., Fang, Li, and Sudjianto 2006). Sun, Wang,
and Xu (2019) considered the design’s projection uniformity
under the centered L2-discrepancy measure. For an (n, sm)

design D = (xik), its (squared) centered L2-discrepancy (CD) is
defined as

CD(D) = 1
n2

n∑
i=1

n∑
j=1

m∏
k=1

(
1 + 1

2
|zik| + 1

2
|zjk| − 1

2
|zik − zjk|

)

− 2
n

n∑
i=1

m∏
k=1

(
1 + 1

2
|zik| − 1

2
|zik|2

)
+

(
13
12

)m
,

where zik = (2xik − s + 1)/(2s).
By focusing on two-dimensional projection uniformity based

on the CD criterion, Sun, Wang, and Xu (2019) proposed the
uniform projection criterion, which is defined as

φ(D) = 2
m(m − 1)

∑
|U |=2

CD(DU ), (8)

where U ⊂ {1, 2, . . . , m}, |U | stands for the cardinality of U and
DU is the projected design of D onto dimensions indexed by the
elements of U . A design is called a uniform projection design
if it attains the minimum φ(D) value. Note that for a balanced
design, the criterion (8) is equivalent to the CL2,t criterion with
t = 2 proposed in Ma, Fang, and Lin (2003).

According to Theorem 1 of Sun, Wang, and Xu (2019) and
their Section 4’s numerical results, a uniform projection design
D tends to have small φ(DU ) values for all projections. We can
define other uniform projection criterion using other discrep-
ancies, but we restrict our attention to the original definition (8)
due to the associated good theoretical properties given below.
The following two lemmas from Sun, Wang, and Xu (2019)
connect the projection uniformity with the pairwise L1-distance
between design points.

Lemma 3. For a balanced (n, sm) design D,

φ(D) = g(D)

4n2m(m − 1)s2 + C(m, s), (9)



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 381

where

g(D) =
n∑

i=1

n∑
j=1

d2
1(xi, xj) − 2

n

n∑
i=1

( n∑
j=1

d1(xi, xj)

)2

and
C(m, s)

= 4(5m − 2)s4 + 30(3m − 5)s2 + 15m + 33
720(m − 1)s4 + 1 + (−1)s

64s4 .

Lemma 4. For a balanced (n, sm) design D, φ(D) ≥ φLB1, where

φLB1 =
5m(4s4 + 2(13n − 17)s2 − n + 5)

−(n − 1)(8s4 + 150s2 − 33)

720(n − 1)(m − 1)s4

+ 1 + (−1)s

64s4 . (10)

The bound is achieved if and only if D is an equidistant design
under the L1-distance.

The lower bound (10) can be viewed as an analogy of the
saturated and supersaturated bound (m+1−n)/[(n−1)(m−1)]
for ρ2(D). The lower bound is effective when the factor-to-run
ratio m/n is large, but less useful when the factor-to-run ratio
is small. For example, for an LHD(20, 3), the bound in (10) is
−0.002957, which is negative. Now we give an improved lower
bound of φ(D) which incorporates the small factor-to-run ratio
case into consideration.

Theorem 4. For a balanced (n, sm) design D, φ(D) ≥ φLB =
max {φLB1, φLB2} , where φLB1 is defined in (10) and

φLB2 = 26s2 − 1
144s4 + 1 + (−1)s

64s4 . (11)

Furthermore, the lower bound (11) is achieved if and only if D
is combinatorially orthogonal.

Theorem 4 improves Lemma 4 and avoids the lower bound
being negative. The lower bound (11) is from the perspective
of combinatorial orthogonality. It shows that an OA(n, m, s, 2),
if it exists, has the best two-dimensional projection uniformity
φ(D). Let us examine when the lower bound φLB2 is better than
φLB1 in more detail. Comparing (10) and (11), we have

φLB1 − φLB2 =
(
s2 − 1

) (
s2(5m − 2n + 2) − 5m − 7n + 7

)
180(m − 1)(n − 1)s4 .

Therefore, φLB1 ≤ φLB2 if and only if

m ≤ 2s2 + 7
5s2 − 5

(n − 1). (12)

From (12), we see that when s = 2, the lower bound φLB2 is
better than φLB1 if and only if m < n − 1, which is the same
condition when the lower bound (m + 1 − n)/[(n − 1)(m − 1)]
for ρ2(D) is negative in Theorem 2. However, as s increases,
the ratio (2s2 + 7)/(5s2 − 5) decreases and condition (12)
differs from that for ρ2(D). For example, when s = 3 and 4,
condition (12) becomes m ≤ 5(n − 1)/8 and m ≤ 39(n −
1)/75, respectively. In the extreme case of LHDs with s = n,
φLB1 ≤ φLB2 if and only if m ≤ (2n2 + 7)/(5n + 5), which is
approximately equivalent to m/(n − 1) ≤ 2/5 for medium or
large n.

Example 7. Sun, Wang, and Xu (2019) constructed a uniform
projection design D via algorithm in their Example 1. This
design is an LHD(25, 3) with φ(D) = 5.279 × 10−4. The
original lower bound established in Sun, Wang, and Xu (2019)
is φLB1 = −3.558 × 10−3 < 0. Since m/(n − 1) = 1/8 < 2/5,
by (12), φLB2 is better than φLB1. The improved lower bound is
φLB = φLB2 = 3.135×10−4, which is of the same order as φ(D).

3.2. Projection Uniformity and Maximin L1-Distance

This subsection presents some further results on the relation-
ship between φ(D) and L1-distance parallel to the results regard-
ing ρ2(D). We also establish asymptotical optimality of several
classes of LHDs.

Theorem 5. Let D be a balanced (n, sm) design and V1(D) be
defined in (5) with p = 1. We have

φ(D) ≤ φLB1 + V1(D)

2n2m(m − 1)s2 , (13)

where φLB1 is defined in (10). The equality holds if and only if
d2(xi, s0) = m(s2−1)/12 for any 1 ≤ i ≤ n, where s0 = (s−1)/2
and d2(xi, s0) = ∑m

k=1(xik − s0)
2.

Maximin L1-distance designs tend to have small V1(D); thus,
by Theorem 5, they tend to have small φ(D) values and good
two-dimensional projection uniformity. We have the following
corollary, parallel to Corollary 1.

Corollary 2. Let D be a balanced (n, sm) design and d̄1 be defined
in (1). We have

φ(D) ≤ φLB1 + nm(s2 − 1)2(δ/d̄1)
2

36(n − 1)(m − 1)s4 , (14)

where δ = max1≤i<j≤n |d1(xi, xj) − d̄1|.
The next lemma gives an upper bound of φ(D) for balanced

designs.

Lemma 5. For a balanced (n, sm) design D, φ(D) ≤ φUB, where

φUB = (10m − 8)s4 + (140m − 150)s2 − 25m + 33
720(m − 1)s4

+ (−1)s + 1
64s4 . (15)

We define the relative φ-efficiency of an (n, sm) design D as

φRE(D) = φUB − φ(D)

φUB − φLB
, (16)

where φLB = max{φLB1, φLB2} is defined in Theorem 4, and φUB
is given in (15). The larger the φRE(D) value is, the better the
projection uniformity is. Obviously, φRE(D) = 1 if and only if
φ(D) = φLB, that is, D is either an OA(n, m, s, 2) or a maximin
L1-equidistant design.

In the sequel, we investigate the projection uniformity of sev-
eral classes of maximin LHDs constructed via good lattice point
(GLP) designs. Let (h1, . . . , hm) be a set of integers coprime
to n. A GLP design D = (xik) is defined by xik = i × hk
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(mod n) for i = 1, . . . , n and k = 1, . . . , m. The GLP design
D is an n × m LHD. Let ϕ(n) be the Euler function, that is,
the number of positive integers coprime to n and less than n.
We can construct an n × m GLP design for any m ≤ ϕ(n). In
particular, when n is a prime, ϕ(n) = n − 1. For b ∈ Zn, let
Db = D + b = (xik + b) (mod n) be a linear permutation
of the GLP design D. Let W : Zn → Zn be the Williams
transformation (Williams 1949), where

W(x) =
{

2x, 0 ≤ x < n/2
2(n − x) − 1, n/2 ≤ x < n.

The following general construction procedure was first pro-
posed by Wang, Xiao, and Xu (2018) for constructing maximin
L1-distance LHDs.

1. Given an integer n, generate an n × m GLP design D, where
m ≤ ϕ(n).

2. For b = 0, . . . , n − 1, generate Db = D + b (mod n) and
Eb = W(Db).

3. Find the best Eb under the given optimality criterion.

We consider two cases. First consider the case n = p and
m = n − 1, where p is an odd prime. Denote Eb∗ the maximin
L1-distance LHD and Eb∗∗ the uniform projection LHD by the
general construction procedure, where b∗ and b∗∗ ∈ Zn. Recall
that d̄1 = (n+1)m/3 for an LHD. Theorem 2 in Wang, Xiao, and
Xu (2018) states that d1(Eb∗) almost attains the upper bound in
Lemma 1 with d1(Eb∗)/d̄1 ≥ 1 − 2/

√
3(n2 − 1). The following

proposition shows that either b∗ = b∗∗ or the maximin L1-
distance LHD Eb∗ has the second smallest φ value.

Proposition 3. Let n = p be an odd prime, m = n − 1, c0 =
�√(n2 − 1)/12� and Eb∗ be the design maximizing d1(Eb).

(i) If c0 <
√

n2/12 − 11/36 − 2/3 or c0 ≥ √
(n2 − 4)/12 −

1/2, then b∗ = b∗∗, that is, Eb∗ is also the uniform projection
design among all Eb’s, b ∈ Zn and

φ(Eb∗) =⎧⎪⎪⎨
⎪⎪⎩

φLB1 + {(c0 + 1)2 − (n2

−1)/12}2/{(n − 2)n4}, c0 <
√

n2/12 − 11/36 − 2/3,
φLB1 + {c2

0 − (n2

−1)/12}2/{(n − 2)n4}, c0 ≥ √
(n2 − 4)/12 − 1/2,

where φLB1 = (12n3 + 154n2 − 12n − 29)/(720n4) is defined
in (10) with m = n − 1 and s = n.

(ii) Otherwise, Eb∗ has the second smallest φ value among all
Eb’s, b ∈ Zn, and φ(Eb∗) = φLB1 + {c2

0 − (n2 − 1)/12}2/{(n −
2)n4}.

(iii) Both φRE(Eb∗) and φRE(Eb∗∗) are of order 1 − O(1/n3)
and converge to one as n increases.

The following proposition shows that the uniform projection
design also has the largest or second largest L1-distance.

Proposition 4. Let n = p be an odd prime, n ≥ 5, and Eb∗∗ be
the design minimizing φ(Eb). Then Eb∗∗ is either the maximin
L1-distance design or has the second largest d1(D) value among
all Eb’s, b ∈ Zn.

Figure 3. Plot of the φRE(Eb) values for n = 2p, 3p, 5p, 7p, p ≤ 200 and b =
�n(1 + 1/

√
3)/4�.

Now we consider the second case with n = kp where k
is a prime and p is an odd prime. Let m = ϕ(n) and b =
�n(1 + 1/

√
3)/4�. The Williams transformed GLP design Eb =

W(Db) = W(D + b) (mod n) is an LHD(n, m). Although Eb
may not be the best design for b ∈ Zn, Wang, Xiao, and Xu
(2018) proved that when k = 2, Eb is asymptotically maximin
L1-distance with d1(Eb)/d̄1 = 1 − O(1/n). For k = 3, 5, 7,
Wang, Xiao, and Xu (2018) showed numerically that as n > 100,
d1(Eb)/d̄1 converges to 1 for n = 7p and are greater than 0.95
for n = 3p, 5p.

Figure 3 shows the φRE(Eb) values for n = 2p, 3p, 5p, 7p
and p ≤ 200. We see that the φRE(Eb) values are all larger
than 0.85 for k = 2 and larger than 0.9 for k = 3, 5, 7. When
p increases, the relative φ-efficiencies approach to one quickly
in all four cases. These LHDs are all nearly optimal under the
criteria of orthogonality, projection uniformity and maximin
L1-distance.

The following theorem shows that φRE(Eb) convergences to
one when n = 2p.

Theorem 6. Let p ≥ 7 be an odd prime. Let n = 2p, m = p − 1
and b = �n(1 + 1/

√
3)/4�. As n increases, φRE(Eb) converges

to one with

φRE(Eb) ≥ 1 −

(
11 − 6

√
3
)

n4 + 2
(
9
√

3 − 14
)

n3

−4
(
5
√

3 − 7
)

n2 + 8
(
2
√

3 − 1
)

n + 16
(n − 2)2n

(
n2 − 1

)
= 1 − O(1/n).

4. Connection Between Projection Uniformity and
Column-Orthogonality

In this section, we study the relationship between projection
uniformity and column-orthogonality. Both criteria aim to opti-
mize the two-dimensional projections of the design. The results
in Sections 2 and 3 indicate that these two criteria are quite
similar from the distance perspective. The expression of h(D) in
Theorem 1 and the expression of g(D) in Lemma 3 are identical
except that the former is with respect to L2-distances while the
latter is with respect to L1-distances.
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In the proof of Theorem 1, we derive an auxiliary expression
of ρ2(D), Equation (S2) in the supplementary materials,

ρ2(D) =
∑n

i=1
∑n

j=1 d2
2(xi, xj) − 2n

∑n
i=1 d2

2(xi, s0)

n2m(m − 1)(s2 − 1)2/36

− m + 2
2(m − 1)

.

By combining (3) in Lemma 2 and Theorem 2 of Sun, Wang, and
Xu (2019), we can also represent φ(D) as

φ(D) =
∑n

i=1
∑n

j=1 s2d2
1(xi, xj) − 2n

∑n
i=1 d2

2(xi, s0)

4m(m − 1)n2s4

+ C1(n, m, s),

where C1(n, m, s) is a constant related to n, m, s only. Intuitively,
for any (n, sm) design D = (xik), the terms

∑n
i=1

∑n
j=1 d2

2(xi, xj)

and
∑n

i=1
∑n

j=1 d2
1(xi, xj) should be highly correlated. In fact,

they are equivalent to V2(D) and V1(D), respectively. Theorem 3
shows that ρ2(D) is controlled by V2(D) and Theorem 5 shows
that φ(D) is controlled by V1(D). A design with a small V2(D)

value tends to have a small V1(D) value and vice versa. This can
also be observed from the following inequalities

d2(xi, xj) =
m∑

k=1
(xik − xjk)

2

≤ (s − 1)

m∑
k=1

|xik − xjk| = (s − 1)d1(xi, xj)

and

m d2(xi, xj) = m
m∑

k=1
(xik − xjk)

2

≥
( m∑

k=1
|xik − xjk|

)2

= d2
1(xi, xj),

which states that L1- and L2-distances are bounded by each
other. Therefore, designs with small φ(D) values tend to have
small correlations between columns and vice versa.

Example 8. To study the relationship between column-
orthogonality and projection uniformity numerically, we
randomly generate 100 LHDs with n = 19 runs and m factors
for m = 6, 12, 18. We compute the ρ2(D) and φ(D) values of
the 100 designs. For comparison, we also compute the CD(D)

values.
Figure 4 shows the scatterplots of φ values (multiplied by

1000) and CD values against ρ2 values, where the numbers in
parentheses are the corresponding correlation coefficients. The
φ(D) and ρ2(D) values have strong correlations (about 0.9) for
each m. The correlations between the φ(D) and CD(D) values
are strong for small m and become weaker for larger m. This
phenomenon also exists for other LHDs and (n, sm) designs we
simulated. The criteria φ(D) and ρ2(D) are highly consistent
while φ(D) and CD(D) are not consistent for designs with large
factor-to-run ratio.

In particular, for two-level designs, since L1- and L2-
distances are both equivalent to the Hamming distance, the
criteria φ(D) and ρ2(D) are equivalent, and they both measure
a design’s combinatorial orthogonality. We summarize this in
the following corollary.

Corollary 3. For a balanced (n, 2m) design D,

φ(D) = 1
64

ρ2(D) + 215
4608

.

As a result, orthogonality and projection uniformity are
exactly equivalent for two-level designs.

5. Discussion

We have shown some connections among the three criteria—
column-orthogonality, projection uniformity, and maximin
distance. Column-orthogonality and projection uniformity
focus on two-dimensional projections of designs which are
useful in experiments where only a subset of input variables are
active. The maximin distance criterion focuses on the separation
of design points in the full-dimensional space. The connections
among these criteria reveal some interesting relationships
between rows and columns of a design. These results not only
help justify one criterion from each other, but also provide new
insights on design constructions; see Section 3.2 for example.

Optimal or nearly optimal designs given in our examples are
(nearly) saturated or supersaturated, which have high factor-
to-run ratios. They are economic to explore experiments with
many factors. In many physical or computer experiments, there
are a large number of factors at an early stage and often only
a few of them are important (Moon, Dean, and Santner 2012;
Woods and Lewis 2016). Our designs are suitable for screen-
ing factors in such experiments since they have large distance,
low correlations, and good projection properties, so that they
should perform well under various modeling and data anal-
ysis strategies. It would be meaningful to investigate how to
use the connections among different space-filling criteria for
constructing space-filling designs with m much smaller than n.
Theorems 3 and 5 indicate that designs with small L1- or L2-
distance variance tend to have small correlation or good pro-
jection uniformity. Conversely, maximin distance designs may
be constructed among the class of column-orthogonal designs
or uniform projection designs when m is much smaller than n.
One difficulty of obtaining maximin distance designs for small
m/n ratio is that the upper bounds of L1- or L2-distance given in
Lemma 1 are too loose. Equations (4) and (9) might be helpful
in establishing better maximin distance bounds in such cases.
We will further study this problem in the future.

Throughout the article, we assume that the design is bal-
anced, that is, an OA of strength one. Two problems are wor-
thy of further study. The first problem is to relax the bal-
ance and discrete-level constraints and explore the relationships
among maximin distance, column-orthogonality, and projec-
tion uniformity for a general design in the m-dimensional cube.
The main results of this article no longer holds and a general
connection is difficult, but in some special cases we can find
good designs with certain geometrical structures and study
their space-filling properties, for example, the cross-polytope
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Figure 4. Scatterplots of CD and φ (multiplied by 1000) against ρ2, with corresponding correlation coefficients in parentheses.

structure studied in Wang, Yang, and Xu (2018). The second
problem is to investigate the relationships among space-filling
criteria for OAs of strength two or higher, OA-based LHDs
(Tang 1993; Xiao and Xu 2018) and strong OAs (He and Tang
2013, 2014; He, Cheng, and Tang 2018).

Supplementary Materials

The online supplementary materials contain the proofs of Lemmas 2 and 5,
Theorems 1–6, and Propositions 3 and 4, and some additional tables and
figures.
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